theorem writeeq1d (_G: wff) (_F1 _F2: set) (a b: nat): $ _G -> _F1 == _F2 $ > $ _G -> write _F1 a b == write _F2 a b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _F1 == _F2 |
|
2 | eqidd | _G -> a = a |
|
3 | eqidd | _G -> b = b |
|
4 | 1, 2, 3 | writeeqd | _G -> write _F1 a b == write _F2 a b |