Theorem writeeq1d | index | src |

theorem writeeq1d (_G: wff) (_F1 _F2: set) (a b: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> write _F1 a b == write _F2 a b $;
StepHypRefExpression
1 hyp _h
_G -> _F1 == _F2
2 eqidd
_G -> a = a
3 eqidd
_G -> b = b
4 1, 2, 3 writeeqd
_G -> write _F1 a b == write _F2 a b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)