theorem sreceqd (_G: wff) (_S1 _S2: set) (_n1 _n2: nat):
$ _G -> _S1 == _S2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> srec _S1 _n1 = srec _S2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _Sh |
_G -> _S1 == _S2 |
2 |
|
hyp _nh |
_G -> _n1 = _n2 |
3 |
2 |
suceqd |
_G -> suc _n1 = suc _n2 |
4 |
1, 3 |
srecauxeqd |
_G -> srecaux _S1 (suc _n1) = srecaux _S2 (suc _n2) |
5 |
4 |
nseqd |
_G -> srecaux _S1 (suc _n1) == srecaux _S2 (suc _n2) |
6 |
5, 2 |
appeqd |
_G -> srecaux _S1 (suc _n1) @ _n1 = srecaux _S2 (suc _n2) @ _n2 |
7 |
6 |
conv srec |
_G -> srec _S1 _n1 = srec _S2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)