theorem isfeqd (_G: wff) (_A1 _A2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> (isfun _A1 <-> isfun _A2) $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> a, b = a, b |
2 |
|
hyp _Ah |
_G -> _A1 == _A2 |
3 |
1, 2 |
eleqd |
_G -> (a, b e. _A1 <-> a, b e. _A2) |
4 |
|
eqidd |
_G -> a, b2 = a, b2 |
5 |
4, 2 |
eleqd |
_G -> (a, b2 e. _A1 <-> a, b2 e. _A2) |
6 |
|
biidd |
_G -> (b = b2 <-> b = b2) |
7 |
5, 6 |
imeqd |
_G -> (a, b2 e. _A1 -> b = b2 <-> a, b2 e. _A2 -> b = b2) |
8 |
3, 7 |
imeqd |
_G -> (a, b e. _A1 -> a, b2 e. _A1 -> b = b2 <-> a, b e. _A2 -> a, b2 e. _A2 -> b = b2) |
9 |
8 |
aleqd |
_G -> (A. b2 (a, b e. _A1 -> a, b2 e. _A1 -> b = b2) <-> A. b2 (a, b e. _A2 -> a, b2 e. _A2 -> b = b2)) |
10 |
9 |
aleqd |
_G -> (A. b A. b2 (a, b e. _A1 -> a, b2 e. _A1 -> b = b2) <-> A. b A. b2 (a, b e. _A2 -> a, b2 e. _A2 -> b = b2)) |
11 |
10 |
aleqd |
_G -> (A. a A. b A. b2 (a, b e. _A1 -> a, b2 e. _A1 -> b = b2) <-> A. a A. b A. b2 (a, b e. _A2 -> a, b2 e. _A2 -> b = b2)) |
12 |
11 |
conv isfun |
_G -> (isfun _A1 <-> isfun _A2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12),
axs_set
(ax_8)