Step | Hyp | Ref | Expression |
1 |
|
elwrite |
x, y e. write F a b <-> ifp (x = a) (y = b) (x, y e. F) |
2 |
|
elwrite |
x, z e. write F a b <-> ifp (x = a) (z = b) (x, z e. F) |
3 |
|
ifppos |
x = a -> (ifp (x = a) (z = b) (x, z e. F) <-> z = b) |
4 |
|
anrl |
isfun F /\ (x = a /\ y = b) -> x = a |
5 |
3, 4 |
syl |
isfun F /\ (x = a /\ y = b) -> (ifp (x = a) (z = b) (x, z e. F) <-> z = b) |
6 |
5 |
imeq1d |
isfun F /\ (x = a /\ y = b) -> (ifp (x = a) (z = b) (x, z e. F) -> y = z <-> z = b -> y = z) |
7 |
|
eqtr4 |
y = b -> z = b -> y = z |
8 |
|
anrr |
isfun F /\ (x = a /\ y = b) -> y = b |
9 |
7, 8 |
syl |
isfun F /\ (x = a /\ y = b) -> z = b -> y = z |
10 |
6, 9 |
mpbird |
isfun F /\ (x = a /\ y = b) -> ifp (x = a) (z = b) (x, z e. F) -> y = z |
11 |
2, 10 |
syl5bi |
isfun F /\ (x = a /\ y = b) -> x, z e. write F a b -> y = z |
12 |
|
ifpneg |
~x = a -> (ifp (x = a) (z = b) (x, z e. F) <-> x, z e. F) |
13 |
|
anrl |
isfun F /\ (~x = a /\ x, y e. F) -> ~x = a |
14 |
12, 13 |
syl |
isfun F /\ (~x = a /\ x, y e. F) -> (ifp (x = a) (z = b) (x, z e. F) <-> x, z e. F) |
15 |
14 |
imeq1d |
isfun F /\ (~x = a /\ x, y e. F) -> (ifp (x = a) (z = b) (x, z e. F) -> y = z <-> x, z e. F -> y = z) |
16 |
|
anll |
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> isfun F |
17 |
|
anrr |
isfun F /\ (~x = a /\ x, y e. F) -> x, y e. F |
18 |
17 |
anwl |
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> x, y e. F |
19 |
|
anr |
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> x, z e. F |
20 |
16, 18, 19 |
isfd |
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> y = z |
21 |
20 |
exp |
isfun F /\ (~x = a /\ x, y e. F) -> x, z e. F -> y = z |
22 |
15, 21 |
mpbird |
isfun F /\ (~x = a /\ x, y e. F) -> ifp (x = a) (z = b) (x, z e. F) -> y = z |
23 |
2, 22 |
syl5bi |
isfun F /\ (~x = a /\ x, y e. F) -> x, z e. write F a b -> y = z |
24 |
11, 23 |
eorda |
isfun F -> x = a /\ y = b \/ ~x = a /\ x, y e. F -> x, z e. write F a b -> y = z |
25 |
24 |
conv ifp |
isfun F -> ifp (x = a) (y = b) (x, y e. F) -> x, z e. write F a b -> y = z |
26 |
1, 25 |
syl5bi |
isfun F -> x, y e. write F a b -> x, z e. write F a b -> y = z |
27 |
26 |
iald |
isfun F -> A. z (x, y e. write F a b -> x, z e. write F a b -> y = z) |
28 |
27 |
iald |
isfun F -> A. y A. z (x, y e. write F a b -> x, z e. write F a b -> y = z) |
29 |
28 |
iald |
isfun F -> A. x A. y A. z (x, y e. write F a b -> x, z e. write F a b -> y = z) |
30 |
29 |
conv isfun |
isfun F -> isfun (write F a b) |