Theorem writeisf | index | src |

theorem writeisf (F: set) (a b: nat): $ isfun F -> isfun (write F a b) $;
StepHypRefExpression
1
x, y e. write F a b <-> ifp (x = a) (y = b) (x, y e. F)
2
x, z e. write F a b <-> ifp (x = a) (z = b) (x, z e. F)
3
x = a -> (ifp (x = a) (z = b) (x, z e. F) <-> z = b)
4
isfun F /\ (x = a /\ y = b) -> x = a
5
3, 4
isfun F /\ (x = a /\ y = b) -> (ifp (x = a) (z = b) (x, z e. F) <-> z = b)
6
isfun F /\ (x = a /\ y = b) -> (ifp (x = a) (z = b) (x, z e. F) -> y = z <-> z = b -> y = z)
7
y = b -> z = b -> y = z
8
isfun F /\ (x = a /\ y = b) -> y = b
9
7, 8
isfun F /\ (x = a /\ y = b) -> z = b -> y = z
10
6, 9
isfun F /\ (x = a /\ y = b) -> ifp (x = a) (z = b) (x, z e. F) -> y = z
11
2, 10
isfun F /\ (x = a /\ y = b) -> x, z e. write F a b -> y = z
12
~x = a -> (ifp (x = a) (z = b) (x, z e. F) <-> x, z e. F)
13
isfun F /\ (~x = a /\ x, y e. F) -> ~x = a
14
isfun F /\ (~x = a /\ x, y e. F) -> (ifp (x = a) (z = b) (x, z e. F) <-> x, z e. F)
15
isfun F /\ (~x = a /\ x, y e. F) -> (ifp (x = a) (z = b) (x, z e. F) -> y = z <-> x, z e. F -> y = z)
16
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> isfun F
17
isfun F /\ (~x = a /\ x, y e. F) -> x, y e. F
18
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> x, y e. F
19
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> x, z e. F
20
16, 18, 19
isfun F /\ (~x = a /\ x, y e. F) /\ x, z e. F -> y = z
21
isfun F /\ (~x = a /\ x, y e. F) -> x, z e. F -> y = z
22
isfun F /\ (~x = a /\ x, y e. F) -> ifp (x = a) (z = b) (x, z e. F) -> y = z
23
2, 22
isfun F /\ (~x = a /\ x, y e. F) -> x, z e. write F a b -> y = z
24
isfun F -> x = a /\ y = b \/ ~x = a /\ x, y e. F -> x, z e. write F a b -> y = z
25
conv ifp
isfun F -> ifp (x = a) (y = b) (x, y e. F) -> x, z e. write F a b -> y = z
26
1, 25
isfun F -> x, y e. write F a b -> x, z e. write F a b -> y = z
27
isfun F -> A. z (x, y e. write F a b -> x, z e. write F a b -> y = z)
28
isfun F -> A. y A. z (x, y e. write F a b -> x, z e. write F a b -> y = z)
29
isfun F -> A. x A. y A. z (x, y e. write F a b -> x, z e. write F a b -> y = z)
30
conv isfun
isfun F -> isfun (write F a b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)