Theorem writeNe | index | src |

pub theorem writeNe (F: set) (a b x: nat):
  $ x != a -> write F a b @ x = F @ x $;
StepHypRefExpression
1 eqapp
A. y (x, y e. write F a b <-> x, y e. F) -> write F a b @ x = F @ x
2 elwrite
x, y e. write F a b <-> ifp (x = a) (y = b) (x, y e. F)
3 ifpneg
~x = a -> (ifp (x = a) (y = b) (x, y e. F) <-> x, y e. F)
4 3 conv ne
x != a -> (ifp (x = a) (y = b) (x, y e. F) <-> x, y e. F)
5 2, 4 syl5bb
x != a -> (x, y e. write F a b <-> x, y e. F)
6 5 iald
x != a -> A. y (x, y e. write F a b <-> x, y e. F)
7 1, 6 syl
x != a -> write F a b @ x = F @ x

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)