pub theorem writeNe (F: set) (a b x: nat):
  $ x != a -> write F a b @ x = F @ x $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqapp | 
          A. y (x, y e. write F a b <-> x, y e. F) -> write F a b @ x = F @ x  | 
        
        
          | 2 | 
           | 
          elwrite | 
          x, y e. write F a b <-> ifp (x = a) (y = b) (x, y e. F)  | 
        
        
          | 3 | 
           | 
          ifpneg | 
          ~x = a -> (ifp (x = a) (y = b) (x, y e. F) <-> x, y e. F)  | 
        
        
          | 4 | 
          3 | 
          conv ne | 
          x != a -> (ifp (x = a) (y = b) (x, y e. F) <-> x, y e. F)  | 
        
        
          | 5 | 
          2, 4 | 
          syl5bb | 
          x != a -> (x, y e. write F a b <-> x, y e. F)  | 
        
        
          | 6 | 
          5 | 
          iald | 
          x != a -> A. y (x, y e. write F a b <-> x, y e. F)  | 
        
        
          | 7 | 
          1, 6 | 
          syl | 
          x != a -> write F a b @ x = F @ x  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)