pub theorem writeEq (F: set) (a b: nat): $ write F a b @ a = b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a, y e. write F a b <-> ifp (a = a) (y = b) (a, y e. F)) -> (ifp (a = a) (y = b) (a, y e. F) <-> y = b) -> (a, y e. write F a b <-> y = b) |
2 |
|
elwrite |
a, y e. write F a b <-> ifp (a = a) (y = b) (a, y e. F) |
3 |
1, 2 |
ax_mp |
(ifp (a = a) (y = b) (a, y e. F) <-> y = b) -> (a, y e. write F a b <-> y = b) |
4 |
|
ifppos |
a = a -> (ifp (a = a) (y = b) (a, y e. F) <-> y = b) |
5 |
|
eqid |
a = a |
6 |
4, 5 |
ax_mp |
ifp (a = a) (y = b) (a, y e. F) <-> y = b |
7 |
3, 6 |
ax_mp |
a, y e. write F a b <-> y = b |
8 |
7 |
a1i |
T. -> (a, y e. write F a b <-> y = b) |
9 |
8 |
eqtheabd |
T. -> the {y | a, y e. write F a b} = b |
10 |
9 |
conv app |
T. -> write F a b @ a = b |
11 |
10 |
trud |
write F a b @ a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)