| Step | Hyp | Ref | Expression |
| 1 |
|
anlr |
pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) -> pset b @ n = u |
| 2 |
1 |
anwr |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset b @ n = u |
| 3 |
|
eqsidd |
_1 = n -> pset b == pset b |
| 4 |
|
id |
_1 = n -> _1 = n |
| 5 |
3, 4 |
appeqd |
_1 = n -> pset b @ _1 = pset b @ n |
| 6 |
|
eqsidd |
_1 = n -> pset a == pset a |
| 7 |
6, 4 |
appeqd |
_1 = n -> pset a @ _1 = pset a @ n |
| 8 |
5, 7 |
eqeqd |
_1 = n -> (pset b @ _1 = pset a @ _1 <-> pset b @ n = pset a @ n) |
| 9 |
|
eqsidd |
_1 = 0 -> pset b == pset b |
| 10 |
|
id |
_1 = 0 -> _1 = 0 |
| 11 |
9, 10 |
appeqd |
_1 = 0 -> pset b @ _1 = pset b @ 0 |
| 12 |
|
eqsidd |
_1 = 0 -> pset a == pset a |
| 13 |
12, 10 |
appeqd |
_1 = 0 -> pset a @ _1 = pset a @ 0 |
| 14 |
11, 13 |
eqeqd |
_1 = 0 -> (pset b @ _1 = pset a @ _1 <-> pset b @ 0 = pset a @ 0) |
| 15 |
|
eqsidd |
_1 = a1 -> pset b == pset b |
| 16 |
|
id |
_1 = a1 -> _1 = a1 |
| 17 |
15, 16 |
appeqd |
_1 = a1 -> pset b @ _1 = pset b @ a1 |
| 18 |
|
eqsidd |
_1 = a1 -> pset a == pset a |
| 19 |
18, 16 |
appeqd |
_1 = a1 -> pset a @ _1 = pset a @ a1 |
| 20 |
17, 19 |
eqeqd |
_1 = a1 -> (pset b @ _1 = pset a @ _1 <-> pset b @ a1 = pset a @ a1) |
| 21 |
|
eqsidd |
_1 = suc a1 -> pset b == pset b |
| 22 |
|
id |
_1 = suc a1 -> _1 = suc a1 |
| 23 |
21, 22 |
appeqd |
_1 = suc a1 -> pset b @ _1 = pset b @ suc a1 |
| 24 |
|
eqsidd |
_1 = suc a1 -> pset a == pset a |
| 25 |
24, 22 |
appeqd |
_1 = suc a1 -> pset a @ _1 = pset a @ suc a1 |
| 26 |
23, 25 |
eqeqd |
_1 = suc a1 -> (pset b @ _1 = pset a @ _1 <-> pset b @ suc a1 = pset a @ suc a1) |
| 27 |
|
anll |
pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) -> pset b @ 0 = z |
| 28 |
27 |
anwr |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset b @ 0 = z |
| 29 |
|
hyp h1 |
G -> pset a @ 0 = z |
| 30 |
29 |
anwl |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset a @ 0 = z |
| 31 |
28, 30 |
eqtr4d |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset b @ 0 = pset a @ 0 |
| 32 |
|
anlr |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 -> a1 < n |
| 33 |
|
anllr |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) |
| 34 |
|
lteq1 |
i = a1 -> (i < n <-> a1 < n) |
| 35 |
|
suceq |
i = a1 -> suc i = suc a1 |
| 36 |
35 |
appeq2d |
i = a1 -> pset b @ suc i = pset b @ suc a1 |
| 37 |
|
appeq2 |
i = a1 -> pset b @ i = pset b @ a1 |
| 38 |
37 |
appeq2d |
i = a1 -> S @ (pset b @ i) = S @ (pset b @ a1) |
| 39 |
36, 38 |
eqeqd |
i = a1 -> (pset b @ suc i = S @ (pset b @ i) <-> pset b @ suc a1 = S @ (pset b @ a1)) |
| 40 |
34, 39 |
imeqd |
i = a1 -> (i < n -> pset b @ suc i = S @ (pset b @ i) <-> a1 < n -> pset b @ suc a1 = S @ (pset b @ a1)) |
| 41 |
40 |
eale |
A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) -> a1 < n -> pset b @ suc a1 = S @ (pset b @ a1) |
| 42 |
41 |
anwr |
pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) -> a1 < n -> pset b @ suc a1 = S @ (pset b @ a1) |
| 43 |
33, 42 |
rsyl |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
a1 < n ->
pset b @ suc a1 = S @ (pset b @ a1) |
| 44 |
32, 43 |
mpd |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
pset b @ suc a1 = S @ (pset b @ a1) |
| 45 |
|
appeq2 |
pset b @ a1 = pset a @ a1 -> S @ (pset b @ a1) = S @ (pset a @ a1) |
| 46 |
45 |
anwr |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
S @ (pset b @ a1) = S @ (pset a @ a1) |
| 47 |
|
hyp h3 |
G -> A. i (i < n -> pset a @ suc i = S @ (pset a @ i)) |
| 48 |
35 |
appeq2d |
i = a1 -> pset a @ suc i = pset a @ suc a1 |
| 49 |
|
appeq2 |
i = a1 -> pset a @ i = pset a @ a1 |
| 50 |
49 |
appeq2d |
i = a1 -> S @ (pset a @ i) = S @ (pset a @ a1) |
| 51 |
48, 50 |
eqeqd |
i = a1 -> (pset a @ suc i = S @ (pset a @ i) <-> pset a @ suc a1 = S @ (pset a @ a1)) |
| 52 |
34, 51 |
imeqd |
i = a1 -> (i < n -> pset a @ suc i = S @ (pset a @ i) <-> a1 < n -> pset a @ suc a1 = S @ (pset a @ a1)) |
| 53 |
52 |
eale |
A. i (i < n -> pset a @ suc i = S @ (pset a @ i)) -> a1 < n -> pset a @ suc a1 = S @ (pset a @ a1) |
| 54 |
47, 53 |
rsyl |
G -> a1 < n -> pset a @ suc a1 = S @ (pset a @ a1) |
| 55 |
54 |
anw3l |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
a1 < n ->
pset a @ suc a1 = S @ (pset a @ a1) |
| 56 |
32, 55 |
mpd |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
pset a @ suc a1 = S @ (pset a @ a1) |
| 57 |
46, 56 |
eqtr4d |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
S @ (pset b @ a1) = pset a @ suc a1 |
| 58 |
44, 57 |
eqtrd |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) /\ a1 < n /\ pset b @ a1 = pset a @ a1 ->
pset b @ suc a1 = pset a @ suc a1 |
| 59 |
8, 14, 20, 26, 31, 58 |
indlt |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset b @ n = pset a @ n |
| 60 |
|
hyp h2 |
G -> pset a @ n = v |
| 61 |
60 |
anwl |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset a @ n = v |
| 62 |
59, 61 |
eqtrd |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> pset b @ n = v |
| 63 |
2, 62 |
eqtr3d |
G /\ (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> u = v |
| 64 |
63 |
eexda |
G -> E. b (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) -> u = v |
| 65 |
|
pseteq |
b = a -> pset b == pset a |
| 66 |
65 |
anwr |
G /\ u = v /\ b = a -> pset b == pset a |
| 67 |
66 |
appeq1d |
G /\ u = v /\ b = a -> pset b @ 0 = pset a @ 0 |
| 68 |
29 |
anwll |
G /\ u = v /\ b = a -> pset a @ 0 = z |
| 69 |
67, 68 |
eqtrd |
G /\ u = v /\ b = a -> pset b @ 0 = z |
| 70 |
66 |
appeq1d |
G /\ u = v /\ b = a -> pset b @ n = pset a @ n |
| 71 |
60 |
anwll |
G /\ u = v /\ b = a -> pset a @ n = v |
| 72 |
|
anlr |
G /\ u = v /\ b = a -> u = v |
| 73 |
71, 72 |
eqtr4d |
G /\ u = v /\ b = a -> pset a @ n = u |
| 74 |
70, 73 |
eqtrd |
G /\ u = v /\ b = a -> pset b @ n = u |
| 75 |
69, 74 |
iand |
G /\ u = v /\ b = a -> pset b @ 0 = z /\ pset b @ n = u |
| 76 |
66 |
appeq1d |
G /\ u = v /\ b = a -> pset b @ suc i = pset a @ suc i |
| 77 |
66 |
appeq1d |
G /\ u = v /\ b = a -> pset b @ i = pset a @ i |
| 78 |
77 |
appeq2d |
G /\ u = v /\ b = a -> S @ (pset b @ i) = S @ (pset a @ i) |
| 79 |
76, 78 |
eqeqd |
G /\ u = v /\ b = a -> (pset b @ suc i = S @ (pset b @ i) <-> pset a @ suc i = S @ (pset a @ i)) |
| 80 |
79 |
imeq2d |
G /\ u = v /\ b = a -> (i < n -> pset b @ suc i = S @ (pset b @ i) <-> i < n -> pset a @ suc i = S @ (pset a @ i)) |
| 81 |
80 |
aleqd |
G /\ u = v /\ b = a -> (A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) <-> A. i (i < n -> pset a @ suc i = S @ (pset a @ i))) |
| 82 |
47 |
anwll |
G /\ u = v /\ b = a -> A. i (i < n -> pset a @ suc i = S @ (pset a @ i)) |
| 83 |
81, 82 |
mpbird |
G /\ u = v /\ b = a -> A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) |
| 84 |
75, 83 |
iand |
G /\ u = v /\ b = a -> pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)) |
| 85 |
84 |
iexde |
G /\ u = v -> E. b (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) |
| 86 |
85 |
exp |
G -> u = v -> E. b (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) |
| 87 |
64, 86 |
ibid |
G -> (E. b (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i))) <-> u = v) |
| 88 |
87 |
eqtheabd |
G -> the {u | E. b (pset b @ 0 = z /\ pset b @ n = u /\ A. i (i < n -> pset b @ suc i = S @ (pset b @ i)))} = v |
| 89 |
88 |
conv rec |
G -> rec z S n = v |