Step | Hyp | Ref | Expression |
1 |
|
exsuc |
nth n l != 0 <-> E. a nth n l = suc a |
2 |
|
nthne0 |
nth n l != 0 <-> n < len l |
3 |
|
lteq2 |
len (map F l) = len l -> (n < len (map F l) <-> n < len l) |
4 |
|
maplen |
len (map F l) = len l |
5 |
3, 4 |
ax_mp |
n < len (map F l) <-> n < len l |
6 |
|
nthne0 |
nth n (map F l) != 0 <-> n < len (map F l) |
7 |
|
sucne0 |
nth n (map F l) = suc b -> nth n (map F l) != 0 |
8 |
6, 7 |
sylib |
nth n (map F l) = suc b -> n < len (map F l) |
9 |
5, 8 |
sylib |
nth n (map F l) = suc b -> n < len l |
10 |
2, 9 |
sylibr |
nth n (map F l) = suc b -> nth n l != 0 |
11 |
1, 10 |
sylib |
nth n (map F l) = suc b -> E. a nth n l = suc a |
12 |
|
anr |
nth n (map F l) = suc b /\ nth n l = suc a -> nth n l = suc a |
13 |
|
peano2 |
suc b = suc (F @ a) <-> b = F @ a |
14 |
|
anl |
nth n (map F l) = suc b /\ nth n l = suc a -> nth n (map F l) = suc b |
15 |
|
mapnth |
nth n l = suc a -> nth n (map F l) = suc (F @ a) |
16 |
15 |
anwr |
nth n (map F l) = suc b /\ nth n l = suc a -> nth n (map F l) = suc (F @ a) |
17 |
14, 16 |
eqtr3d |
nth n (map F l) = suc b /\ nth n l = suc a -> suc b = suc (F @ a) |
18 |
13, 17 |
sylib |
nth n (map F l) = suc b /\ nth n l = suc a -> b = F @ a |
19 |
12, 18 |
iand |
nth n (map F l) = suc b /\ nth n l = suc a -> nth n l = suc a /\ b = F @ a |
20 |
19 |
exp |
nth n (map F l) = suc b -> nth n l = suc a -> nth n l = suc a /\ b = F @ a |
21 |
20 |
eximd |
nth n (map F l) = suc b -> E. a nth n l = suc a -> E. a (nth n l = suc a /\ b = F @ a) |
22 |
11, 21 |
mpd |
nth n (map F l) = suc b -> E. a (nth n l = suc a /\ b = F @ a) |
23 |
15 |
anwl |
nth n l = suc a /\ b = F @ a -> nth n (map F l) = suc (F @ a) |
24 |
|
anr |
nth n l = suc a /\ b = F @ a -> b = F @ a |
25 |
24 |
suceqd |
nth n l = suc a /\ b = F @ a -> suc b = suc (F @ a) |
26 |
23, 25 |
eqtr4d |
nth n l = suc a /\ b = F @ a -> nth n (map F l) = suc b |
27 |
26 |
eex |
E. a (nth n l = suc a /\ b = F @ a) -> nth n (map F l) = suc b |
28 |
22, 27 |
ibii |
nth n (map F l) = suc b <-> E. a (nth n l = suc a /\ b = F @ a) |