| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          exsuc | 
          nth n l != 0 <-> E. a nth n l = suc a  | 
        
        
          | 2 | 
           | 
          nthne0 | 
          nth n l != 0 <-> n < len l  | 
        
        
          | 3 | 
           | 
          lteq2 | 
          len (map F l) = len l -> (n < len (map F l) <-> n < len l)  | 
        
        
          | 4 | 
           | 
          maplen | 
          len (map F l) = len l  | 
        
        
          | 5 | 
          3, 4 | 
          ax_mp | 
          n < len (map F l) <-> n < len l  | 
        
        
          | 6 | 
           | 
          nthne0 | 
          nth n (map F l) != 0 <-> n < len (map F l)  | 
        
        
          | 7 | 
           | 
          sucne0 | 
          nth n (map F l) = suc b -> nth n (map F l) != 0  | 
        
        
          | 8 | 
          6, 7 | 
          sylib | 
          nth n (map F l) = suc b -> n < len (map F l)  | 
        
        
          | 9 | 
          5, 8 | 
          sylib | 
          nth n (map F l) = suc b -> n < len l  | 
        
        
          | 10 | 
          2, 9 | 
          sylibr | 
          nth n (map F l) = suc b -> nth n l != 0  | 
        
        
          | 11 | 
          1, 10 | 
          sylib | 
          nth n (map F l) = suc b -> E. a nth n l = suc a  | 
        
        
          | 12 | 
           | 
          anr | 
          nth n (map F l) = suc b /\ nth n l = suc a -> nth n l = suc a  | 
        
        
          | 13 | 
           | 
          peano2 | 
          suc b = suc (F @ a) <-> b = F @ a  | 
        
        
          | 14 | 
           | 
          anl | 
          nth n (map F l) = suc b /\ nth n l = suc a -> nth n (map F l) = suc b  | 
        
        
          | 15 | 
           | 
          mapnth | 
          nth n l = suc a -> nth n (map F l) = suc (F @ a)  | 
        
        
          | 16 | 
          15 | 
          anwr | 
          nth n (map F l) = suc b /\ nth n l = suc a -> nth n (map F l) = suc (F @ a)  | 
        
        
          | 17 | 
          14, 16 | 
          eqtr3d | 
          nth n (map F l) = suc b /\ nth n l = suc a -> suc b = suc (F @ a)  | 
        
        
          | 18 | 
          13, 17 | 
          sylib | 
          nth n (map F l) = suc b /\ nth n l = suc a -> b = F @ a  | 
        
        
          | 19 | 
          12, 18 | 
          iand | 
          nth n (map F l) = suc b /\ nth n l = suc a -> nth n l = suc a /\ b = F @ a  | 
        
        
          | 20 | 
          19 | 
          exp | 
          nth n (map F l) = suc b -> nth n l = suc a -> nth n l = suc a /\ b = F @ a  | 
        
        
          | 21 | 
          20 | 
          eximd | 
          nth n (map F l) = suc b -> E. a nth n l = suc a -> E. a (nth n l = suc a /\ b = F @ a)  | 
        
        
          | 22 | 
          11, 21 | 
          mpd | 
          nth n (map F l) = suc b -> E. a (nth n l = suc a /\ b = F @ a)  | 
        
        
          | 23 | 
          15 | 
          anwl | 
          nth n l = suc a /\ b = F @ a -> nth n (map F l) = suc (F @ a)  | 
        
        
          | 24 | 
           | 
          anr | 
          nth n l = suc a /\ b = F @ a -> b = F @ a  | 
        
        
          | 25 | 
          24 | 
          suceqd | 
          nth n l = suc a /\ b = F @ a -> suc b = suc (F @ a)  | 
        
        
          | 26 | 
          23, 25 | 
          eqtr4d | 
          nth n l = suc a /\ b = F @ a -> nth n (map F l) = suc b  | 
        
        
          | 27 | 
          26 | 
          eex | 
          E. a (nth n l = suc a /\ b = F @ a) -> nth n (map F l) = suc b  | 
        
        
          | 28 | 
          22, 27 | 
          ibii | 
          nth n (map F l) = suc b <-> E. a (nth n l = suc a /\ b = F @ a)  |