Step | Hyp | Ref | Expression |
1 |
|
contra |
(~a, b <= a, c -> a, b <= a, c) -> a, b <= a, c |
2 |
|
eqle |
a, b = a, c -> a, b <= a, c |
3 |
|
anl |
b <= c /\ ~a, b <= a, c -> b <= c |
4 |
|
leadd2 |
c <= b <-> a + c <= a + b |
5 |
|
prlem2 |
a, c <= a, b -> a + c <= a + b |
6 |
|
leorle |
a, b <= a, c \/ a, c <= a, b |
7 |
6 |
conv or |
~a, b <= a, c -> a, c <= a, b |
8 |
7 |
anwr |
b <= c /\ ~a, b <= a, c -> a, c <= a, b |
9 |
5, 8 |
syl |
b <= c /\ ~a, b <= a, c -> a + c <= a + b |
10 |
4, 9 |
sylibr |
b <= c /\ ~a, b <= a, c -> c <= b |
11 |
3, 10 |
leasymd |
b <= c /\ ~a, b <= a, c -> b = c |
12 |
11 |
preq2d |
b <= c /\ ~a, b <= a, c -> a, b = a, c |
13 |
2, 12 |
syl |
b <= c /\ ~a, b <= a, c -> a, b <= a, c |
14 |
1, 13 |
syla |
b <= c -> a, b <= a, c |
15 |
|
leadd2 |
b <= c <-> a + b <= a + c |
16 |
|
prlem2 |
a, b <= a, c -> a + b <= a + c |
17 |
15, 16 |
sylibr |
a, b <= a, c -> b <= c |
18 |
14, 17 |
ibii |
b <= c <-> a, b <= a, c |