Theorem lepr2 | index | src |

theorem lepr2 (a b c: nat): $ b <= c <-> a, b <= a, c $;
StepHypRefExpression
1 contra
(~a, b <= a, c -> a, b <= a, c) -> a, b <= a, c
2 eqle
a, b = a, c -> a, b <= a, c
3 anl
b <= c /\ ~a, b <= a, c -> b <= c
4 leadd2
c <= b <-> a + c <= a + b
5 prlem2
a, c <= a, b -> a + c <= a + b
6 leorle
a, b <= a, c \/ a, c <= a, b
7 6 conv or
~a, b <= a, c -> a, c <= a, b
8 7 anwr
b <= c /\ ~a, b <= a, c -> a, c <= a, b
9 5, 8 syl
b <= c /\ ~a, b <= a, c -> a + c <= a + b
10 4, 9 sylibr
b <= c /\ ~a, b <= a, c -> c <= b
11 3, 10 leasymd
b <= c /\ ~a, b <= a, c -> b = c
12 11 preq2d
b <= c /\ ~a, b <= a, c -> a, b = a, c
13 2, 12 syl
b <= c /\ ~a, b <= a, c -> a, b <= a, c
14 1, 13 syla
b <= c -> a, b <= a, c
15 leadd2
b <= c <-> a + b <= a + c
16 prlem2
a, b <= a, c -> a + b <= a + c
17 15, 16 sylibr
a, b <= a, c -> b <= c
18 14, 17 ibii
b <= c <-> a, b <= a, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)