| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          contra | 
          (~a, b <= a, c -> a, b <= a, c) -> a, b <= a, c  | 
        
        
          | 2 | 
           | 
          eqle | 
          a, b = a, c -> a, b <= a, c  | 
        
        
          | 3 | 
           | 
          anl | 
          b <= c /\ ~a, b <= a, c -> b <= c  | 
        
        
          | 4 | 
           | 
          leadd2 | 
          c <= b <-> a + c <= a + b  | 
        
        
          | 5 | 
           | 
          prlem2 | 
          a, c <= a, b -> a + c <= a + b  | 
        
        
          | 6 | 
           | 
          leorle | 
          a, b <= a, c \/ a, c <= a, b  | 
        
        
          | 7 | 
          6 | 
          conv or | 
          ~a, b <= a, c -> a, c <= a, b  | 
        
        
          | 8 | 
          7 | 
          anwr | 
          b <= c /\ ~a, b <= a, c -> a, c <= a, b  | 
        
        
          | 9 | 
          5, 8 | 
          syl | 
          b <= c /\ ~a, b <= a, c -> a + c <= a + b  | 
        
        
          | 10 | 
          4, 9 | 
          sylibr | 
          b <= c /\ ~a, b <= a, c -> c <= b  | 
        
        
          | 11 | 
          3, 10 | 
          leasymd | 
          b <= c /\ ~a, b <= a, c -> b = c  | 
        
        
          | 12 | 
          11 | 
          preq2d | 
          b <= c /\ ~a, b <= a, c -> a, b = a, c  | 
        
        
          | 13 | 
          2, 12 | 
          syl | 
          b <= c /\ ~a, b <= a, c -> a, b <= a, c  | 
        
        
          | 14 | 
          1, 13 | 
          syla | 
          b <= c -> a, b <= a, c  | 
        
        
          | 15 | 
           | 
          leadd2 | 
          b <= c <-> a + b <= a + c  | 
        
        
          | 16 | 
           | 
          prlem2 | 
          a, b <= a, c -> a + b <= a + c  | 
        
        
          | 17 | 
          15, 16 | 
          sylibr | 
          a, b <= a, c -> b <= c  | 
        
        
          | 18 | 
          14, 17 | 
          ibii | 
          b <= c <-> a, b <= a, c  |