Theorem lepr1 | index | src |

theorem lepr1 (a b c: nat): $ a <= b <-> a, c <= b, c $;
StepHypRefExpression
1 contra
(~a, c <= b, c -> a, c <= b, c) -> a, c <= b, c
2 eqle
a, c = b, c -> a, c <= b, c
3 anl
a <= b /\ ~a, c <= b, c -> a <= b
4 leadd1
b <= a <-> b + c <= a + c
5 prlem2
b, c <= a, c -> b + c <= a + c
6 leorle
a, c <= b, c \/ b, c <= a, c
7 6 conv or
~a, c <= b, c -> b, c <= a, c
8 7 anwr
a <= b /\ ~a, c <= b, c -> b, c <= a, c
9 5, 8 syl
a <= b /\ ~a, c <= b, c -> b + c <= a + c
10 4, 9 sylibr
a <= b /\ ~a, c <= b, c -> b <= a
11 3, 10 leasymd
a <= b /\ ~a, c <= b, c -> a = b
12 11 preq1d
a <= b /\ ~a, c <= b, c -> a, c = b, c
13 2, 12 syl
a <= b /\ ~a, c <= b, c -> a, c <= b, c
14 1, 13 syla
a <= b -> a, c <= b, c
15 leadd1
a <= b <-> a + c <= b + c
16 prlem2
a, c <= b, c -> a + c <= b + c
17 15, 16 sylibr
a, c <= b, c -> a <= b
18 14, 17 ibii
a <= b <-> a, c <= b, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)