Step | Hyp | Ref | Expression |
1 |
|
contra |
(~a, c <= b, c -> a, c <= b, c) -> a, c <= b, c |
2 |
|
eqle |
a, c = b, c -> a, c <= b, c |
3 |
|
anl |
a <= b /\ ~a, c <= b, c -> a <= b |
4 |
|
leadd1 |
b <= a <-> b + c <= a + c |
5 |
|
prlem2 |
b, c <= a, c -> b + c <= a + c |
6 |
|
leorle |
a, c <= b, c \/ b, c <= a, c |
7 |
6 |
conv or |
~a, c <= b, c -> b, c <= a, c |
8 |
7 |
anwr |
a <= b /\ ~a, c <= b, c -> b, c <= a, c |
9 |
5, 8 |
syl |
a <= b /\ ~a, c <= b, c -> b + c <= a + c |
10 |
4, 9 |
sylibr |
a <= b /\ ~a, c <= b, c -> b <= a |
11 |
3, 10 |
leasymd |
a <= b /\ ~a, c <= b, c -> a = b |
12 |
11 |
preq1d |
a <= b /\ ~a, c <= b, c -> a, c = b, c |
13 |
2, 12 |
syl |
a <= b /\ ~a, c <= b, c -> a, c <= b, c |
14 |
1, 13 |
syla |
a <= b -> a, c <= b, c |
15 |
|
leadd1 |
a <= b <-> a + c <= b + c |
16 |
|
prlem2 |
a, c <= b, c -> a + c <= b + c |
17 |
15, 16 |
sylibr |
a, c <= b, c -> a <= b |
18 |
14, 17 |
ibii |
a <= b <-> a, c <= b, c |