Theorem ltpr1 | index | src |

theorem ltpr1 (a b c: nat): $ a < b <-> a, c < b, c $;
StepHypRefExpression
1 ltnle
a < b <-> ~b <= a
2 ltnle
a, c < b, c <-> ~b, c <= a, c
3 noteq
(b <= a <-> b, c <= a, c) -> (~b <= a <-> ~b, c <= a, c)
4 lepr1
b <= a <-> b, c <= a, c
5 3, 4 ax_mp
~b <= a <-> ~b, c <= a, c
6 1, 2, 5 bitr4gi
a < b <-> a, c < b, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)