Theorem ltpr2 | index | src |

theorem ltpr2 (a b c: nat): $ b < c <-> a, b < a, c $;
StepHypRefExpression
1 ltnle
b < c <-> ~c <= b
2 ltnle
a, b < a, c <-> ~a, c <= a, b
3 noteq
(c <= b <-> a, c <= a, b) -> (~c <= b <-> ~a, c <= a, b)
4 lepr2
c <= b <-> a, c <= a, b
5 3, 4 ax_mp
~c <= b <-> ~a, c <= a, b
6 1, 2, 5 bitr4gi
b < c <-> a, b < a, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)