theorem ltpr2 (a b c: nat): $ b < c <-> a, b < a, c $;
Step | Hyp | Ref | Expression |
1 |
|
ltnle |
b < c <-> ~c <= b |
2 |
|
ltnle |
a, b < a, c <-> ~a, c <= a, b |
3 |
|
noteq |
(c <= b <-> a, c <= a, b) -> (~c <= b <-> ~a, c <= a, b) |
4 |
|
lepr2 |
c <= b <-> a, c <= a, b |
5 |
3, 4 |
ax_mp |
~c <= b <-> ~a, c <= a, b |
6 |
1, 2, 5 |
bitr4gi |
b < c <-> a, b < a, c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)