theorem fsteqd (_G: wff) (_a1 _a2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> fst _a1 = fst _a2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ah |
_G -> _a1 = _a2 |
2 |
|
eqidd |
_G -> x, y = x, y |
3 |
1, 2 |
eqeqd |
_G -> (_a1 = x, y <-> _a2 = x, y) |
4 |
3 |
exeqd |
_G -> (E. y _a1 = x, y <-> E. y _a2 = x, y) |
5 |
4 |
abeqd |
_G -> {x | E. y _a1 = x, y} == {x | E. y _a2 = x, y} |
6 |
5 |
theeqd |
_G -> the {x | E. y _a1 = x, y} = the {x | E. y _a2 = x, y} |
7 |
6 |
conv fst |
_G -> fst _a1 = fst _a2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)