theorem funcres (A B C F: set): $ func F A B /\ C C_ A -> func (F |` C) C B $;
Step | Hyp | Ref | Expression |
1 |
|
resisf |
isfun F -> isfun (F |` C) |
2 |
|
funcisf |
func F A B -> isfun F |
3 |
2 |
anwl |
func F A B /\ C C_ A -> isfun F |
4 |
1, 3 |
syl |
func F A B /\ C C_ A -> isfun (F |` C) |
5 |
|
dmres |
Dom (F |` C) == Dom F i^i C |
6 |
|
eqin2 |
C C_ Dom F <-> Dom F i^i C == C |
7 |
|
funcdm |
func F A B -> Dom F == A |
8 |
7 |
sseq2d |
func F A B -> (C C_ Dom F <-> C C_ A) |
9 |
8 |
bi2d |
func F A B -> C C_ A -> C C_ Dom F |
10 |
9 |
imp |
func F A B /\ C C_ A -> C C_ Dom F |
11 |
6, 10 |
sylib |
func F A B /\ C C_ A -> Dom F i^i C == C |
12 |
5, 11 |
syl5eqs |
func F A B /\ C C_ A -> Dom (F |` C) == C |
13 |
4, 12 |
iand |
func F A B /\ C C_ A -> isfun (F |` C) /\ Dom (F |` C) == C |
14 |
|
sstr |
Ran (F |` C) C_ Ran F -> Ran F C_ B -> Ran (F |` C) C_ B |
15 |
|
rnss |
F |` C C_ F -> Ran (F |` C) C_ Ran F |
16 |
|
resss |
F |` C C_ F |
17 |
15, 16 |
ax_mp |
Ran (F |` C) C_ Ran F |
18 |
14, 17 |
ax_mp |
Ran F C_ B -> Ran (F |` C) C_ B |
19 |
|
funcrn |
func F A B -> Ran F C_ B |
20 |
19 |
anwl |
func F A B /\ C C_ A -> Ran F C_ B |
21 |
18, 20 |
syl |
func F A B /\ C C_ A -> Ran (F |` C) C_ B |
22 |
13, 21 |
iand |
func F A B /\ C C_ A -> isfun (F |` C) /\ Dom (F |` C) == C /\ Ran (F |` C) C_ B |
23 |
22 |
conv func |
func F A B /\ C C_ A -> func (F |` C) C B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)