theorem funcal (A B F: set) {x: nat}:
$ func F A B <-> isfun F /\ Dom F == A /\ A. x (x e. A -> F @ x e. B) $;
Step | Hyp | Ref | Expression |
1 |
|
aneq2a |
(isfun F /\ Dom F == A -> (Ran F C_ B <-> A. x (x e. A -> F @ x e. B))) ->
(isfun F /\ Dom F == A /\ Ran F C_ B <-> isfun F /\ Dom F == A /\ A. x (x e. A -> F @ x e. B)) |
2 |
1 |
conv func |
(isfun F /\ Dom F == A -> (Ran F C_ B <-> A. x (x e. A -> F @ x e. B))) -> (func F A B <-> isfun F /\ Dom F == A /\ A. x (x e. A -> F @ x e. B)) |
3 |
|
isfrnss |
isfun F -> (Ran F C_ B <-> A. x (x e. Dom F -> F @ x e. B)) |
4 |
3 |
anwl |
isfun F /\ Dom F == A -> (Ran F C_ B <-> A. x (x e. Dom F -> F @ x e. B)) |
5 |
|
anr |
isfun F /\ Dom F == A -> Dom F == A |
6 |
5 |
eleq2d |
isfun F /\ Dom F == A -> (x e. Dom F <-> x e. A) |
7 |
6 |
imeq1d |
isfun F /\ Dom F == A -> (x e. Dom F -> F @ x e. B <-> x e. A -> F @ x e. B) |
8 |
7 |
aleqd |
isfun F /\ Dom F == A -> (A. x (x e. Dom F -> F @ x e. B) <-> A. x (x e. A -> F @ x e. B)) |
9 |
4, 8 |
bitrd |
isfun F /\ Dom F == A -> (Ran F C_ B <-> A. x (x e. A -> F @ x e. B)) |
10 |
2, 9 |
ax_mp |
func F A B <-> isfun F /\ Dom F == A /\ A. x (x e. A -> F @ x e. B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)