Theorem funcss3 | index | src |

theorem funcss3 (A B C F: set): $ B C_ C -> func F A B -> func F A C $;
StepHypRefExpression
1 sstr
Ran F C_ B -> B C_ C -> Ran F C_ C
2 1 com12
B C_ C -> Ran F C_ B -> Ran F C_ C
3 2 anim2d
B C_ C -> isfun F /\ Dom F == A /\ Ran F C_ B -> isfun F /\ Dom F == A /\ Ran F C_ C
4 3 conv func
B C_ C -> func F A B -> func F A C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)