theorem funcss3 (A B C F: set): $ B C_ C -> func F A B -> func F A C $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr | Ran F C_ B -> B C_ C -> Ran F C_ C | |
| 2 | 1 | com12 | B C_ C -> Ran F C_ B -> Ran F C_ C | 
| 3 | 2 | anim2d | B C_ C -> isfun F /\ Dom F == A /\ Ran F C_ B -> isfun F /\ Dom F == A /\ Ran F C_ C | 
| 4 | 3 | conv func | B C_ C -> func F A B -> func F A C |