theorem rnss (A B: set): $ A C_ B -> Ran A C_ Ran B $;
Step | Hyp | Ref | Expression |
1 |
|
equn1 |
Ran A C_ Ran B <-> Ran A u. Ran B == Ran B |
2 |
|
equn1 |
A C_ B <-> A u. B == B |
3 |
|
rnun |
Ran (A u. B) == Ran A u. Ran B |
4 |
|
rneq |
A u. B == B -> Ran (A u. B) == Ran B |
5 |
3, 4 |
syl5eqsr |
A u. B == B -> Ran A u. Ran B == Ran B |
6 |
2, 5 |
sylbi |
A C_ B -> Ran A u. Ran B == Ran B |
7 |
1, 6 |
sylibr |
A C_ B -> Ran A C_ Ran B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)