Theorem dmss | index | src |

theorem dmss (A B: set): $ A C_ B -> Dom A C_ Dom B $;
StepHypRefExpression
1 equn1
Dom A C_ Dom B <-> Dom A u. Dom B == Dom B
2 equn1
A C_ B <-> A u. B == B
3 dmun
Dom (A u. B) == Dom A u. Dom B
4 dmeq
A u. B == B -> Dom (A u. B) == Dom B
5 3, 4 syl5eqsr
A u. B == B -> Dom A u. Dom B == Dom B
6 2, 5 sylbi
A C_ B -> Dom A u. Dom B == Dom B
7 1, 6 sylibr
A C_ B -> Dom A C_ Dom B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)