theorem dmss (A B: set): $ A C_ B -> Dom A C_ Dom B $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | equn1 | Dom A C_ Dom B <-> Dom A u. Dom B == Dom B | 
        
          | 2 |  | equn1 | A C_ B <-> A u. B == B | 
        
          | 3 |  | dmun | Dom (A u. B) == Dom A u. Dom B | 
        
          | 4 |  | dmeq | A u. B == B -> Dom (A u. B) == Dom B | 
        
          | 5 | 3, 4 | syl5eqsr | A u. B == B -> Dom A u. Dom B == Dom B | 
        
          | 6 | 2, 5 | sylbi | A C_ B -> Dom A u. Dom B == Dom B | 
        
          | 7 | 1, 6 | sylibr | A C_ B -> Dom A C_ Dom B | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)