theorem eqin2 (A B: set): $ A C_ B <-> B i^i A == A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(A C_ B <-> A i^i B == A) -> (A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A) |
2 |
|
eqin1 |
A C_ B <-> A i^i B == A |
3 |
1, 2 |
ax_mp |
(A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A) |
4 |
|
eqseq1 |
A i^i B == B i^i A -> (A i^i B == A <-> B i^i A == A) |
5 |
|
incom |
A i^i B == B i^i A |
6 |
4, 5 |
ax_mp |
A i^i B == A <-> B i^i A == A |
7 |
3, 6 |
ax_mp |
A C_ B <-> B i^i A == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)