theorem eqin2 (A B: set): $ A C_ B <-> B i^i A == A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (A C_ B <-> A i^i B == A) -> (A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A) | 
        
          | 2 |  | eqin1 | A C_ B <-> A i^i B == A | 
        
          | 3 | 1, 2 | ax_mp | (A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A) | 
        
          | 4 |  | eqseq1 | A i^i B == B i^i A -> (A i^i B == A <-> B i^i A == A) | 
        
          | 5 |  | incom | A i^i B == B i^i A | 
        
          | 6 | 4, 5 | ax_mp | A i^i B == A <-> B i^i A == A | 
        
          | 7 | 3, 6 | ax_mp | A C_ B <-> B i^i A == A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)