Theorem eqin2 | index | src |

theorem eqin2 (A B: set): $ A C_ B <-> B i^i A == A $;
StepHypRefExpression
1 bitr
(A C_ B <-> A i^i B == A) -> (A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A)
2 eqin1
A C_ B <-> A i^i B == A
3 1, 2 ax_mp
(A i^i B == A <-> B i^i A == A) -> (A C_ B <-> B i^i A == A)
4 eqseq1
A i^i B == B i^i A -> (A i^i B == A <-> B i^i A == A)
5 incom
A i^i B == B i^i A
6 4, 5 ax_mp
A i^i B == A <-> B i^i A == A
7 3, 6 ax_mp
A C_ B <-> B i^i A == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)