theorem eqin1 (A B: set): $ A C_ B <-> A i^i B == A $;
Step | Hyp | Ref | Expression |
1 |
|
inss1 |
A i^i B C_ A |
2 |
1 |
a1i |
A C_ B -> A i^i B C_ A |
3 |
|
ssin |
A C_ A i^i B <-> A C_ A /\ A C_ B |
4 |
|
ssid |
A C_ A |
5 |
4 |
a1i |
A C_ B -> A C_ A |
6 |
|
id |
A C_ B -> A C_ B |
7 |
5, 6 |
iand |
A C_ B -> A C_ A /\ A C_ B |
8 |
3, 7 |
sylibr |
A C_ B -> A C_ A i^i B |
9 |
2, 8 |
ssasymd |
A C_ B -> A i^i B == A |
10 |
|
inss2 |
A i^i B C_ B |
11 |
|
sseq1 |
A i^i B == A -> (A i^i B C_ B <-> A C_ B) |
12 |
10, 11 |
mpbii |
A i^i B == A -> A C_ B |
13 |
9, 12 |
ibii |
A C_ B <-> A i^i B == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)