theorem eqin1 (A B: set): $ A C_ B <-> A i^i B == A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | inss1 | A i^i B C_ A | 
        
          | 2 | 1 | a1i | A C_ B -> A i^i B C_ A | 
        
          | 3 |  | ssin | A C_ A i^i B <-> A C_ A /\ A C_ B | 
        
          | 4 |  | ssid | A C_ A | 
        
          | 5 | 4 | a1i | A C_ B -> A C_ A | 
        
          | 6 |  | id | A C_ B -> A C_ B | 
        
          | 7 | 5, 6 | iand | A C_ B -> A C_ A /\ A C_ B | 
        
          | 8 | 3, 7 | sylibr | A C_ B -> A C_ A i^i B | 
        
          | 9 | 2, 8 | ssasymd | A C_ B -> A i^i B == A | 
        
          | 10 |  | inss2 | A i^i B C_ B | 
        
          | 11 |  | sseq1 | A i^i B == A -> (A i^i B C_ B <-> A C_ B) | 
        
          | 12 | 10, 11 | mpbii | A i^i B == A -> A C_ B | 
        
          | 13 | 9, 12 | ibii | A C_ B <-> A i^i B == A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)