Theorem inss1 | index | src |

theorem inss1 (A B: set): $ A i^i B C_ A $;
StepHypRefExpression
1 elin
x e. A i^i B <-> x e. A /\ x e. B
2 anl
x e. A /\ x e. B -> x e. A
3 1, 2 sylbi
x e. A i^i B -> x e. A
4 3 ax_gen
A. x (x e. A i^i B -> x e. A)
5 4 conv subset
A i^i B C_ A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)