theorem ssin (A B C: set): $ A C_ B i^i C <-> A C_ B /\ A C_ C $;
| Step | Hyp | Ref | Expression |
| 1 |
|
inss1 |
B i^i C C_ B |
| 2 |
|
sstr |
A C_ B i^i C -> B i^i C C_ B -> A C_ B |
| 3 |
1, 2 |
mpi |
A C_ B i^i C -> A C_ B |
| 4 |
|
inss2 |
B i^i C C_ C |
| 5 |
|
sstr |
A C_ B i^i C -> B i^i C C_ C -> A C_ C |
| 6 |
4, 5 |
mpi |
A C_ B i^i C -> A C_ C |
| 7 |
3, 6 |
iand |
A C_ B i^i C -> A C_ B /\ A C_ C |
| 8 |
|
elin |
x e. B i^i C <-> x e. B /\ x e. C |
| 9 |
|
anll |
A C_ B /\ A C_ C /\ x e. A -> A C_ B |
| 10 |
|
anr |
A C_ B /\ A C_ C /\ x e. A -> x e. A |
| 11 |
9, 10 |
sseld |
A C_ B /\ A C_ C /\ x e. A -> x e. B |
| 12 |
|
anlr |
A C_ B /\ A C_ C /\ x e. A -> A C_ C |
| 13 |
12, 10 |
sseld |
A C_ B /\ A C_ C /\ x e. A -> x e. C |
| 14 |
11, 13 |
iand |
A C_ B /\ A C_ C /\ x e. A -> x e. B /\ x e. C |
| 15 |
8, 14 |
sylibr |
A C_ B /\ A C_ C /\ x e. A -> x e. B i^i C |
| 16 |
15 |
exp |
A C_ B /\ A C_ C -> x e. A -> x e. B i^i C |
| 17 |
16 |
iald |
A C_ B /\ A C_ C -> A. x (x e. A -> x e. B i^i C) |
| 18 |
17 |
conv subset |
A C_ B /\ A C_ C -> A C_ B i^i C |
| 19 |
7, 18 |
ibii |
A C_ B i^i C <-> A C_ B /\ A C_ C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)