theorem ssin1 (A B C: set): $ A C_ B -> A i^i C C_ B i^i C $;
Step | Hyp | Ref | Expression |
1 |
|
ssin |
A i^i C C_ B i^i C <-> A i^i C C_ B /\ A i^i C C_ C |
2 |
|
sstr |
A i^i C C_ A -> A C_ B -> A i^i C C_ B |
3 |
|
inss1 |
A i^i C C_ A |
4 |
2, 3 |
ax_mp |
A C_ B -> A i^i C C_ B |
5 |
|
inss2 |
A i^i C C_ C |
6 |
5 |
a1i |
A C_ B -> A i^i C C_ C |
7 |
4, 6 |
iand |
A C_ B -> A i^i C C_ B /\ A i^i C C_ C |
8 |
1, 7 |
sylibr |
A C_ B -> A i^i C C_ B i^i C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)