theorem ssin1 (A B C: set): $ A C_ B -> A i^i C C_ B i^i C $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ssin | A i^i C C_ B i^i C <-> A i^i C C_ B /\ A i^i C C_ C | 
        
          | 2 |  | sstr | A i^i C C_ A -> A C_ B -> A i^i C C_ B | 
        
          | 3 |  | inss1 | A i^i C C_ A | 
        
          | 4 | 2, 3 | ax_mp | A C_ B -> A i^i C C_ B | 
        
          | 5 |  | inss2 | A i^i C C_ C | 
        
          | 6 | 5 | a1i | A C_ B -> A i^i C C_ C | 
        
          | 7 | 4, 6 | iand | A C_ B -> A i^i C C_ B /\ A i^i C C_ C | 
        
          | 8 | 1, 7 | sylibr | A C_ B -> A i^i C C_ B i^i C | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)