theorem ssin2 (A B C: set): $ B C_ C -> A i^i B C_ A i^i C $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ssin | A i^i B C_ A i^i C <-> A i^i B C_ A /\ A i^i B C_ C | 
        
          | 2 |  | inss1 | A i^i B C_ A | 
        
          | 3 | 2 | a1i | B C_ C -> A i^i B C_ A | 
        
          | 4 |  | sstr | A i^i B C_ B -> B C_ C -> A i^i B C_ C | 
        
          | 5 |  | inss2 | A i^i B C_ B | 
        
          | 6 | 4, 5 | ax_mp | B C_ C -> A i^i B C_ C | 
        
          | 7 | 3, 6 | iand | B C_ C -> A i^i B C_ A /\ A i^i B C_ C | 
        
          | 8 | 1, 7 | sylibr | B C_ C -> A i^i B C_ A i^i C | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)