theorem ssin2 (A B C: set): $ B C_ C -> A i^i B C_ A i^i C $;
Step | Hyp | Ref | Expression |
1 |
|
ssin |
A i^i B C_ A i^i C <-> A i^i B C_ A /\ A i^i B C_ C |
2 |
|
inss1 |
A i^i B C_ A |
3 |
2 |
a1i |
B C_ C -> A i^i B C_ A |
4 |
|
sstr |
A i^i B C_ B -> B C_ C -> A i^i B C_ C |
5 |
|
inss2 |
A i^i B C_ B |
6 |
4, 5 |
ax_mp |
B C_ C -> A i^i B C_ C |
7 |
3, 6 |
iand |
B C_ C -> A i^i B C_ A /\ A i^i B C_ C |
8 |
1, 7 |
sylibr |
B C_ C -> A i^i B C_ A i^i C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)