Theorem sseld | index | src |

theorem sseld (A B: set) (G: wff) (a: nat):
  $ G -> A C_ B $ >
  $ G -> a e. A $ >
  $ G -> a e. B $;
StepHypRefExpression
1 ssel
A C_ B -> a e. A -> a e. B
2 hyp h1
G -> A C_ B
3 hyp h2
G -> a e. A
4 1, 2, 3 sylc
G -> a e. B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)