Theorem funcisf | index | src |

theorem funcisf (A B F: set): $ func F A B -> isfun F $;
StepHypRefExpression
1 anll
isfun F /\ Dom F == A /\ Ran F C_ B -> isfun F
2 1 conv func
func F A B -> isfun F

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)