theorem elxabed (A: set) (G: wff) (a b: nat) (p: wff) {x: nat} (B: set x):
$ G /\ x = a -> (b e. B <-> p) $ >
$ G -> (a, b e. X\ x e. A, B <-> a e. A /\ p) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
elxabs |
a, b e. X\ x e. A, B <-> a e. A /\ b e. S[a / x] B |
| 2 |
|
ax_6 |
E. x x = a |
| 3 |
|
nfv |
F/ x G |
| 4 |
|
nfv |
F/ x a e. A |
| 5 |
|
nfsbs1 |
FS/ x S[a / x] B |
| 6 |
5 |
nfel2 |
F/ x b e. S[a / x] B |
| 7 |
4, 6 |
nfan |
F/ x a e. A /\ b e. S[a / x] B |
| 8 |
|
nfv |
F/ x a e. A /\ p |
| 9 |
7, 8 |
nfbi |
F/ x a e. A /\ b e. S[a / x] B <-> a e. A /\ p |
| 10 |
|
sbsq |
x = a -> B == S[a / x] B |
| 11 |
10 |
anwr |
G /\ x = a -> B == S[a / x] B |
| 12 |
11 |
eleq2d |
G /\ x = a -> (b e. B <-> b e. S[a / x] B) |
| 13 |
|
hyp h |
G /\ x = a -> (b e. B <-> p) |
| 14 |
12, 13 |
bitr3d |
G /\ x = a -> (b e. S[a / x] B <-> p) |
| 15 |
14 |
aneq2d |
G /\ x = a -> (a e. A /\ b e. S[a / x] B <-> a e. A /\ p) |
| 16 |
15 |
exp |
G -> x = a -> (a e. A /\ b e. S[a / x] B <-> a e. A /\ p) |
| 17 |
3, 9, 16 |
eexdh |
G -> E. x x = a -> (a e. A /\ b e. S[a / x] B <-> a e. A /\ p) |
| 18 |
2, 17 |
mpi |
G -> (a e. A /\ b e. S[a / x] B <-> a e. A /\ p) |
| 19 |
1, 18 |
syl5bb |
G -> (a, b e. X\ x e. A, B <-> a e. A /\ p) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)