theorem elxabs (A: set) (a b: nat) {x: nat} (B: set x):
$ a, b e. X\ x e. A, B <-> a e. A /\ b e. S[a / x] B $;
Step | Hyp | Ref | Expression |
1 |
|
fstpr |
fst (a, b) = a |
2 |
|
fsteq |
p = a, b -> fst p = fst (a, b) |
3 |
1, 2 |
syl6eq |
p = a, b -> fst p = a |
4 |
3 |
eleq1d |
p = a, b -> (fst p e. A <-> a e. A) |
5 |
|
sndpr |
snd (a, b) = b |
6 |
|
sndeq |
p = a, b -> snd p = snd (a, b) |
7 |
5, 6 |
syl6eq |
p = a, b -> snd p = b |
8 |
3 |
sbseq1d |
p = a, b -> S[fst p / x] B == S[a / x] B |
9 |
7, 8 |
eleqd |
p = a, b -> (snd p e. S[fst p / x] B <-> b e. S[a / x] B) |
10 |
4, 9 |
aneqd |
p = a, b -> (fst p e. A /\ snd p e. S[fst p / x] B <-> a e. A /\ b e. S[a / x] B) |
11 |
10 |
elabe |
a, b e. {p | fst p e. A /\ snd p e. S[fst p / x] B} <-> a e. A /\ b e. S[a / x] B |
12 |
11 |
conv xab |
a, b e. X\ x e. A, B <-> a e. A /\ b e. S[a / x] B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)