theorem zmodb0 (a n: nat): $ b0 a %Z n = a % n $;
Step | Hyp | Ref | Expression |
1 |
|
zmodeq2 |
n = 0 -> b0 a %Z n = b0 a %Z 0 |
2 |
|
zmod02 |
b0 a %Z 0 = zabs (b0 a) |
3 |
|
zabsb0 |
zabs (b0 a) = a |
4 |
|
mod0 |
a % 0 = a |
5 |
|
modeq2 |
n = 0 -> a % n = a % 0 |
6 |
4, 5 |
syl6eq |
n = 0 -> a % n = a |
7 |
3, 6 |
syl6eqr |
n = 0 -> a % n = zabs (b0 a) |
8 |
2, 7 |
syl6eqr |
n = 0 -> a % n = b0 a %Z 0 |
9 |
1, 8 |
eqtr4d |
n = 0 -> b0 a %Z n = a % n |
10 |
|
eqmaddn |
mod(n): a + n = a |
11 |
10 |
conv eqm |
(a + n) % n = a % n |
12 |
|
modeq1 |
zfst (b0 a) + n - zsnd (b0 a) % n = a + n -> (zfst (b0 a) + n - zsnd (b0 a) % n) % n = (a + n) % n |
13 |
|
eqtr |
zfst (b0 a) + n - zsnd (b0 a) % n = a + n - 0 -> a + n - 0 = a + n -> zfst (b0 a) + n - zsnd (b0 a) % n = a + n |
14 |
|
subeq |
zfst (b0 a) + n = a + n -> zsnd (b0 a) % n = 0 -> zfst (b0 a) + n - zsnd (b0 a) % n = a + n - 0 |
15 |
|
addeq1 |
zfst (b0 a) = a -> zfst (b0 a) + n = a + n |
16 |
|
zfstb0 |
zfst (b0 a) = a |
17 |
15, 16 |
ax_mp |
zfst (b0 a) + n = a + n |
18 |
14, 17 |
ax_mp |
zsnd (b0 a) % n = 0 -> zfst (b0 a) + n - zsnd (b0 a) % n = a + n - 0 |
19 |
|
eqtr |
zsnd (b0 a) % n = 0 % n -> 0 % n = 0 -> zsnd (b0 a) % n = 0 |
20 |
|
modeq1 |
zsnd (b0 a) = 0 -> zsnd (b0 a) % n = 0 % n |
21 |
|
zsndb0 |
zsnd (b0 a) = 0 |
22 |
20, 21 |
ax_mp |
zsnd (b0 a) % n = 0 % n |
23 |
19, 22 |
ax_mp |
0 % n = 0 -> zsnd (b0 a) % n = 0 |
24 |
|
mod01 |
0 % n = 0 |
25 |
23, 24 |
ax_mp |
zsnd (b0 a) % n = 0 |
26 |
18, 25 |
ax_mp |
zfst (b0 a) + n - zsnd (b0 a) % n = a + n - 0 |
27 |
13, 26 |
ax_mp |
a + n - 0 = a + n -> zfst (b0 a) + n - zsnd (b0 a) % n = a + n |
28 |
|
sub02 |
a + n - 0 = a + n |
29 |
27, 28 |
ax_mp |
zfst (b0 a) + n - zsnd (b0 a) % n = a + n |
30 |
12, 29 |
ax_mp |
(zfst (b0 a) + n - zsnd (b0 a) % n) % n = (a + n) % n |
31 |
|
zmodn02 |
n != 0 -> b0 a %Z n = (zfst (b0 a) + n - zsnd (b0 a) % n) % n |
32 |
31 |
conv ne |
~n = 0 -> b0 a %Z n = (zfst (b0 a) + n - zsnd (b0 a) % n) % n |
33 |
30, 32 |
syl6eq |
~n = 0 -> b0 a %Z n = (a + n) % n |
34 |
11, 33 |
syl6eq |
~n = 0 -> b0 a %Z n = a % n |
35 |
9, 34 |
cases |
b0 a %Z n = a % n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)