theorem zmod02 (a: nat): $ a %Z 0 = zabs a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
a %Z 0 = zabs a % 0 -> zabs a % 0 = zabs a -> a %Z 0 = zabs a |
2 |
|
modeq1 |
zabs (zfst a + 0 -ZN zsnd a % 0) = zabs a -> zabs (zfst a + 0 -ZN zsnd a % 0) % 0 = zabs a % 0 |
3 |
2 |
conv zmod |
zabs (zfst a + 0 -ZN zsnd a % 0) = zabs a -> a %Z 0 = zabs a % 0 |
4 |
|
zabseq |
zfst a + 0 -ZN zsnd a % 0 = a -> zabs (zfst a + 0 -ZN zsnd a % 0) = zabs a |
5 |
|
eqtr |
zfst a + 0 -ZN zsnd a % 0 = zfst a -ZN zsnd a -> zfst a -ZN zsnd a = a -> zfst a + 0 -ZN zsnd a % 0 = a |
6 |
|
znsubeq |
zfst a + 0 = zfst a -> zsnd a % 0 = zsnd a -> zfst a + 0 -ZN zsnd a % 0 = zfst a -ZN zsnd a |
7 |
|
add02 |
zfst a + 0 = zfst a |
8 |
6, 7 |
ax_mp |
zsnd a % 0 = zsnd a -> zfst a + 0 -ZN zsnd a % 0 = zfst a -ZN zsnd a |
9 |
|
mod0 |
zsnd a % 0 = zsnd a |
10 |
8, 9 |
ax_mp |
zfst a + 0 -ZN zsnd a % 0 = zfst a -ZN zsnd a |
11 |
5, 10 |
ax_mp |
zfst a -ZN zsnd a = a -> zfst a + 0 -ZN zsnd a % 0 = a |
12 |
|
zfstsnd |
zfst a -ZN zsnd a = a |
13 |
11, 12 |
ax_mp |
zfst a + 0 -ZN zsnd a % 0 = a |
14 |
4, 13 |
ax_mp |
zabs (zfst a + 0 -ZN zsnd a % 0) = zabs a |
15 |
3, 14 |
ax_mp |
a %Z 0 = zabs a % 0 |
16 |
1, 15 |
ax_mp |
zabs a % 0 = zabs a -> a %Z 0 = zabs a |
17 |
|
mod0 |
zabs a % 0 = zabs a |
18 |
16, 17 |
ax_mp |
a %Z 0 = zabs a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)