Theorem eqmaddn | index | src |

theorem eqmaddn (a n: nat): $ mod(n): a + n = a $;
StepHypRefExpression
1 eqmeq3
a + 0 = a -> (mod(n): a + n = a + 0 <-> mod(n): a + n = a)
2 add0
a + 0 = a
3 1, 2 ax_mp
mod(n): a + n = a + 0 <-> mod(n): a + n = a
4 eqmadd2
mod(n): a + n = a + 0 <-> mod(n): n = 0
5 eqmid0
mod(n): n = 0
6 4, 5 mpbir
mod(n): a + n = a + 0
7 3, 6 mpbi
mod(n): a + n = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)