theorem eqmadd2 (a b c n: nat): $ mod(n): a + b = a + c <-> mod(n): b = c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(mod(n): a + b = a + c <-> mod(n): b + a = c + a) -> (mod(n): b + a = c + a <-> mod(n): b = c) -> (mod(n): a + b = a + c <-> mod(n): b = c) |
2 |
|
eqmeq |
n = n -> a + b = b + a -> a + c = c + a -> (mod(n): a + b = a + c <-> mod(n): b + a = c + a) |
3 |
|
eqid |
n = n |
4 |
2, 3 |
ax_mp |
a + b = b + a -> a + c = c + a -> (mod(n): a + b = a + c <-> mod(n): b + a = c + a) |
5 |
|
addcom |
a + b = b + a |
6 |
4, 5 |
ax_mp |
a + c = c + a -> (mod(n): a + b = a + c <-> mod(n): b + a = c + a) |
7 |
|
addcom |
a + c = c + a |
8 |
6, 7 |
ax_mp |
mod(n): a + b = a + c <-> mod(n): b + a = c + a |
9 |
1, 8 |
ax_mp |
(mod(n): b + a = c + a <-> mod(n): b = c) -> (mod(n): a + b = a + c <-> mod(n): b = c) |
10 |
|
eqmadd1 |
mod(n): b + a = c + a <-> mod(n): b = c |
11 |
9, 10 |
ax_mp |
mod(n): a + b = a + c <-> mod(n): b = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)