Theorem eqmsuc | index | src |

theorem eqmsuc (a b n: nat): $ mod(n): suc a = suc b <-> mod(n): a = b $;
StepHypRefExpression
1 bitr3
(mod(n): a + 1 = b + 1 <-> mod(n): suc a = suc b) -> (mod(n): a + 1 = b + 1 <-> mod(n): a = b) -> (mod(n): suc a = suc b <-> mod(n): a = b)
2 eqmeq
n = n -> a + 1 = suc a -> b + 1 = suc b -> (mod(n): a + 1 = b + 1 <-> mod(n): suc a = suc b)
3 eqid
n = n
4 2, 3 ax_mp
a + 1 = suc a -> b + 1 = suc b -> (mod(n): a + 1 = b + 1 <-> mod(n): suc a = suc b)
5 add12
a + 1 = suc a
6 4, 5 ax_mp
b + 1 = suc b -> (mod(n): a + 1 = b + 1 <-> mod(n): suc a = suc b)
7 add12
b + 1 = suc b
8 6, 7 ax_mp
mod(n): a + 1 = b + 1 <-> mod(n): suc a = suc b
9 1, 8 ax_mp
(mod(n): a + 1 = b + 1 <-> mod(n): a = b) -> (mod(n): suc a = suc b <-> mod(n): a = b)
10 eqmadd1
mod(n): a + 1 = b + 1 <-> mod(n): a = b
11 9, 10 ax_mp
mod(n): suc a = suc b <-> mod(n): a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)