theorem eqmeq (_n1 _n2 _a1 _a2 _b1 _b2: nat):
$ _n1 = _n2 ->
_a1 = _a2 ->
_b1 = _b2 ->
(mod(_n1): _a1 = _b1 <-> mod(_n2): _a2 = _b2) $;
Step | Hyp | Ref | Expression |
1 |
|
anl |
_n1 = _n2 /\ _a1 = _a2 -> _n1 = _n2 |
2 |
1 |
anwl |
_n1 = _n2 /\ _a1 = _a2 /\ _b1 = _b2 -> _n1 = _n2 |
3 |
|
anr |
_n1 = _n2 /\ _a1 = _a2 -> _a1 = _a2 |
4 |
3 |
anwl |
_n1 = _n2 /\ _a1 = _a2 /\ _b1 = _b2 -> _a1 = _a2 |
5 |
|
anr |
_n1 = _n2 /\ _a1 = _a2 /\ _b1 = _b2 -> _b1 = _b2 |
6 |
2, 4, 5 |
eqmeqd |
_n1 = _n2 /\ _a1 = _a2 /\ _b1 = _b2 -> (mod(_n1): _a1 = _b1 <-> mod(_n2): _a2 = _b2) |
7 |
6 |
exp |
_n1 = _n2 /\ _a1 = _a2 -> _b1 = _b2 -> (mod(_n1): _a1 = _b1 <-> mod(_n2): _a2 = _b2) |
8 |
7 |
exp |
_n1 = _n2 -> _a1 = _a2 -> _b1 = _b2 -> (mod(_n1): _a1 = _b1 <-> mod(_n2): _a2 = _b2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)