theorem eqmadd1 (a b c n: nat): $ mod(n): a + c = b + c <-> mod(n): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(a <= b -> (mod(n): a + c = b + c <-> mod(n): a = b)) ->
(b <= a -> (mod(n): a + c = b + c <-> mod(n): a = b)) ->
a <= b \/ b <= a ->
(mod(n): a + c = b + c <-> mod(n): a = b) |
2 |
|
eqmaddlem |
a <= b -> (mod(n): a + c = b + c <-> mod(n): a = b) |
3 |
1, 2 |
ax_mp |
(b <= a -> (mod(n): a + c = b + c <-> mod(n): a = b)) -> a <= b \/ b <= a -> (mod(n): a + c = b + c <-> mod(n): a = b) |
4 |
|
eqmcomb |
mod(n): a + c = b + c <-> mod(n): b + c = a + c |
5 |
|
eqmcomb |
mod(n): b = a <-> mod(n): a = b |
6 |
|
eqmaddlem |
b <= a -> (mod(n): b + c = a + c <-> mod(n): b = a) |
7 |
5, 6 |
syl6bb |
b <= a -> (mod(n): b + c = a + c <-> mod(n): a = b) |
8 |
4, 7 |
syl5bb |
b <= a -> (mod(n): a + c = b + c <-> mod(n): a = b) |
9 |
3, 8 |
ax_mp |
a <= b \/ b <= a -> (mod(n): a + c = b + c <-> mod(n): a = b) |
10 |
|
leorle |
a <= b \/ b <= a |
11 |
9, 10 |
ax_mp |
mod(n): a + c = b + c <-> mod(n): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)