Theorem eqmaddlem | index | src |

theorem eqmaddlem (a b c n: nat):
  $ a <= b -> (mod(n): a + c = b + c <-> mod(n): a = b) $;
StepHypRefExpression
1 leadd1
a <= b <-> a + c <= b + c
2 eqmdvdsub
a + c <= b + c -> (mod(n): a + c = b + c <-> n || b + c - (a + c))
3 1, 2 sylbi
a <= b -> (mod(n): a + c = b + c <-> n || b + c - (a + c))
4 dvdeq2
b + c - (a + c) = b - a -> (n || b + c - (a + c) <-> n || b - a)
5 pnpcan2
b + c - (a + c) = b - a
6 4, 5 ax_mp
n || b + c - (a + c) <-> n || b - a
7 eqmdvdsub
a <= b -> (mod(n): a = b <-> n || b - a)
8 6, 7 syl6bbr
a <= b -> (mod(n): a = b <-> n || b + c - (a + c))
9 3, 8 bitr4d
a <= b -> (mod(n): a + c = b + c <-> mod(n): a = b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)