theorem eqmadd1d (G: wff) (a b c n: nat): $ G -> mod(n): a = b $ > $ G -> mod(n): a + c = b + c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqmadd1 | mod(n): a + c = b + c <-> mod(n): a = b |
|
2 | hyp h | G -> mod(n): a = b |
|
3 | 1, 2 | sylibr | G -> mod(n): a + c = b + c |