theorem eqmadd2d (G: wff) (a b c n: nat): $ G -> mod(n): b = c $ > $ G -> mod(n): a + b = a + c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqmadd2 | mod(n): a + b = a + c <-> mod(n): b = c |
|
2 | hyp h | G -> mod(n): b = c |
|
3 | 1, 2 | sylibr | G -> mod(n): a + b = a + c |