Theorem eqmaddd | index | src |

theorem eqmaddd (G: wff) (a b c d n: nat):
  $ G -> mod(n): a = b $ >
  $ G -> mod(n): c = d $ >
  $ G -> mod(n): a + c = b + d $;
StepHypRefExpression
1 eqmtr
mod(n): a + c = b + c -> mod(n): b + c = b + d -> mod(n): a + c = b + d
2 hyp h1
G -> mod(n): a = b
3 2 eqmadd1d
G -> mod(n): a + c = b + c
4 hyp h2
G -> mod(n): c = d
5 4 eqmadd2d
G -> mod(n): b + c = b + d
6 1, 3, 5 sylc
G -> mod(n): a + c = b + d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)