theorem eqmdvd (a b n: nat): $ mod(n): a = b -> (n || a <-> n || b) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqm03 | 
          mod(n): a = 0 <-> n || a  | 
        
        
          | 2 | 
           | 
          eqm03 | 
          mod(n): b = 0 <-> n || b  | 
        
        
          | 3 | 
           | 
          eqeq1 | 
          a % n = b % n -> (a % n = 0 % n <-> b % n = 0 % n)  | 
        
        
          | 4 | 
          3 | 
          conv eqm | 
          mod(n): a = b -> (mod(n): a = 0 <-> mod(n): b = 0)  | 
        
        
          | 5 | 
          1, 2, 4 | 
          bitr3g | 
          mod(n): a = b -> (n || a <-> n || b)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)