Theorem eqmdvd | index | src |

theorem eqmdvd (a b n: nat): $ mod(n): a = b -> (n || a <-> n || b) $;
StepHypRefExpression
1 eqm03
mod(n): a = 0 <-> n || a
2 eqm03
mod(n): b = 0 <-> n || b
3 eqeq1
a % n = b % n -> (a % n = 0 % n <-> b % n = 0 % n)
4 3 conv eqm
mod(n): a = b -> (mod(n): a = 0 <-> mod(n): b = 0)
5 1, 2, 4 bitr3g
mod(n): a = b -> (n || a <-> n || b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)