Theorem eqm03 | index | src |

theorem eqm03 (a n: nat): $ mod(n): a = 0 <-> n || a $;
StepHypRefExpression
1 bitr
(mod(n): a = 0 <-> a % n = 0) -> (a % n = 0 <-> n || a) -> (mod(n): a = 0 <-> n || a)
2 eqeq2
0 % n = 0 -> (a % n = 0 % n <-> a % n = 0)
3 2 conv eqm
0 % n = 0 -> (mod(n): a = 0 <-> a % n = 0)
4 mod01
0 % n = 0
5 3, 4 ax_mp
mod(n): a = 0 <-> a % n = 0
6 1, 5 ax_mp
(a % n = 0 <-> n || a) -> (mod(n): a = 0 <-> n || a)
7 modeq0
a % n = 0 <-> n || a
8 6, 7 ax_mp
mod(n): a = 0 <-> n || a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)