theorem dvdeqm (G: wff) (a b m n: nat):
$ G -> m || n $ >
$ G -> mod(n): a = b $ >
$ G -> mod(m): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
leorle |
a <= b \/ b <= a |
2 |
|
eqmdvdsub |
a <= b -> (mod(m): a = b <-> m || b - a) |
3 |
2 |
anwr |
G /\ a <= b -> (mod(m): a = b <-> m || b - a) |
4 |
|
dvdtr |
m || n -> n || b - a -> m || b - a |
5 |
|
hyp h1 |
G -> m || n |
6 |
5 |
anwl |
G /\ a <= b -> m || n |
7 |
|
eqmdvdsub |
a <= b -> (mod(n): a = b <-> n || b - a) |
8 |
7 |
anwr |
G /\ a <= b -> (mod(n): a = b <-> n || b - a) |
9 |
|
hyp h2 |
G -> mod(n): a = b |
10 |
9 |
anwl |
G /\ a <= b -> mod(n): a = b |
11 |
8, 10 |
mpbid |
G /\ a <= b -> n || b - a |
12 |
4, 6, 11 |
sylc |
G /\ a <= b -> m || b - a |
13 |
3, 12 |
mpbird |
G /\ a <= b -> mod(m): a = b |
14 |
|
eqmcom |
mod(m): b = a -> mod(m): a = b |
15 |
|
eqmdvdsub |
b <= a -> (mod(m): b = a <-> m || a - b) |
16 |
15 |
anwr |
G /\ b <= a -> (mod(m): b = a <-> m || a - b) |
17 |
|
dvdtr |
m || n -> n || a - b -> m || a - b |
18 |
5 |
anwl |
G /\ b <= a -> m || n |
19 |
|
eqmdvdsub |
b <= a -> (mod(n): b = a <-> n || a - b) |
20 |
19 |
anwr |
G /\ b <= a -> (mod(n): b = a <-> n || a - b) |
21 |
|
eqmcom |
mod(n): a = b -> mod(n): b = a |
22 |
21, 9 |
syl |
G -> mod(n): b = a |
23 |
22 |
anwl |
G /\ b <= a -> mod(n): b = a |
24 |
20, 23 |
mpbid |
G /\ b <= a -> n || a - b |
25 |
17, 18, 24 |
sylc |
G /\ b <= a -> m || a - b |
26 |
16, 25 |
mpbird |
G /\ b <= a -> mod(m): b = a |
27 |
14, 26 |
syl |
G /\ b <= a -> mod(m): a = b |
28 |
13, 27 |
eorda |
G -> a <= b \/ b <= a -> mod(m): a = b |
29 |
1, 28 |
mpi |
G -> mod(m): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)