Theorem eqmcom | index | src |

theorem eqmcom (a b n: nat): $ mod(n): a = b -> mod(n): b = a $;
StepHypRefExpression
1 eqcom
a % n = b % n -> b % n = a % n
2 1 conv eqm
mod(n): a = b -> mod(n): b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)