theorem eqmcom (a b n: nat): $ mod(n): a = b -> mod(n): b = a $;
Step | Hyp | Ref | Expression |
1 |
|
eqcom |
a % n = b % n -> b % n = a % n |
2 |
1 |
conv eqm |
mod(n): a = b -> mod(n): b = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7)