Theorem zipeqd | index | src |

theorem zipeqd (_G: wff) (_l11 _l12 _l21 _l22: nat):
  $ _G -> _l11 = _l12 $ >
  $ _G -> _l21 = _l22 $ >
  $ _G -> zip _l11 _l21 = zip _l12 _l22 $;
StepHypRefExpression
1 eqidd
_G -> i = i
2 hyp _l1h
_G -> _l11 = _l12
3 1, 2 ntheqd
_G -> nth i _l11 = nth i _l12
4 eqidd
_G -> 1 = 1
5 3, 4 subeqd
_G -> nth i _l11 - 1 = nth i _l12 - 1
6 hyp _l2h
_G -> _l21 = _l22
7 1, 6 ntheqd
_G -> nth i _l21 = nth i _l22
8 7, 4 subeqd
_G -> nth i _l21 - 1 = nth i _l22 - 1
9 5, 8 preqd
_G -> nth i _l11 - 1, nth i _l21 - 1 = nth i _l12 - 1, nth i _l22 - 1
10 9 lameqd
_G -> \ i, nth i _l11 - 1, nth i _l21 - 1 == \ i, nth i _l12 - 1, nth i _l22 - 1
11 2 leneqd
_G -> len _l11 = len _l12
12 6 leneqd
_G -> len _l21 = len _l22
13 11, 12 mineqd
_G -> min (len _l11) (len _l21) = min (len _l12) (len _l22)
14 10, 13 lfneqd
_G -> lfn (\ i, nth i _l11 - 1, nth i _l21 - 1) (min (len _l11) (len _l21)) = lfn (\ i, nth i _l12 - 1, nth i _l22 - 1) (min (len _l12) (len _l22))
15 14 conv zip
_G -> zip _l11 _l21 = zip _l12 _l22

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)