theorem zipeqd (_G: wff) (_l11 _l12 _l21 _l22: nat):
$ _G -> _l11 = _l12 $ >
$ _G -> _l21 = _l22 $ >
$ _G -> zip _l11 _l21 = zip _l12 _l22 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> i = i |
2 |
|
hyp _l1h |
_G -> _l11 = _l12 |
3 |
1, 2 |
ntheqd |
_G -> nth i _l11 = nth i _l12 |
4 |
|
eqidd |
_G -> 1 = 1 |
5 |
3, 4 |
subeqd |
_G -> nth i _l11 - 1 = nth i _l12 - 1 |
6 |
|
hyp _l2h |
_G -> _l21 = _l22 |
7 |
1, 6 |
ntheqd |
_G -> nth i _l21 = nth i _l22 |
8 |
7, 4 |
subeqd |
_G -> nth i _l21 - 1 = nth i _l22 - 1 |
9 |
5, 8 |
preqd |
_G -> nth i _l11 - 1, nth i _l21 - 1 = nth i _l12 - 1, nth i _l22 - 1 |
10 |
9 |
lameqd |
_G -> \ i, nth i _l11 - 1, nth i _l21 - 1 == \ i, nth i _l12 - 1, nth i _l22 - 1 |
11 |
2 |
leneqd |
_G -> len _l11 = len _l12 |
12 |
6 |
leneqd |
_G -> len _l21 = len _l22 |
13 |
11, 12 |
mineqd |
_G -> min (len _l11) (len _l21) = min (len _l12) (len _l22) |
14 |
10, 13 |
lfneqd |
_G -> lfn (\ i, nth i _l11 - 1, nth i _l21 - 1) (min (len _l11) (len _l21)) = lfn (\ i, nth i _l12 - 1, nth i _l22 - 1) (min (len _l12) (len _l22)) |
15 |
14 |
conv zip |
_G -> zip _l11 _l21 = zip _l12 _l22 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)