theorem nthext (l1 l2: nat) {n: nat}: $ l1 = l2 <-> A. n nth n l1 = nth n l2 $;
Step | Hyp | Ref | Expression |
1 |
|
ntheq2 |
l1 = l2 -> nth n l1 = nth n l2 |
2 |
1 |
iald |
l1 = l2 -> A. n nth n l1 = nth n l2 |
3 |
|
eqallt1 |
len l1 = len l2 <-> A. n (n < len l1 <-> n < len l2) |
4 |
|
nthne0 |
nth n l1 != 0 <-> n < len l1 |
5 |
|
nthne0 |
nth n l2 != 0 <-> n < len l2 |
6 |
|
neeq1 |
nth n l1 = nth n l2 -> (nth n l1 != 0 <-> nth n l2 != 0) |
7 |
4, 5, 6 |
bitr3g |
nth n l1 = nth n l2 -> (n < len l1 <-> n < len l2) |
8 |
7 |
alimi |
A. n nth n l1 = nth n l2 -> A. n (n < len l1 <-> n < len l2) |
9 |
3, 8 |
sylibr |
A. n nth n l1 = nth n l2 -> len l1 = len l2 |
10 |
|
eqidd |
A. n nth n l1 = nth n l2 -> len l2 = len l2 |
11 |
|
ntheq1 |
n = a1 -> nth n l1 = nth a1 l1 |
12 |
|
ntheq1 |
n = a1 -> nth n l2 = nth a1 l2 |
13 |
11, 12 |
eqeqd |
n = a1 -> (nth n l1 = nth n l2 <-> nth a1 l1 = nth a1 l2) |
14 |
13 |
eale |
A. n nth n l1 = nth n l2 -> nth a1 l1 = nth a1 l2 |
15 |
14 |
anwl |
A. n nth n l1 = nth n l2 /\ a1 < len l2 -> nth a1 l1 = nth a1 l2 |
16 |
9, 10, 15 |
nthext2d |
A. n nth n l1 = nth n l2 -> l1 = l2 |
17 |
2, 16 |
ibii |
l1 = l2 <-> A. n nth n l1 = nth n l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)