Theorem zipeq | index | src |

theorem zipeq (_l11 _l12 _l21 _l22: nat):
  $ _l11 = _l12 -> _l21 = _l22 -> zip _l11 _l21 = zip _l12 _l22 $;
StepHypRefExpression
1 anl
_l11 = _l12 /\ _l21 = _l22 -> _l11 = _l12
2 anr
_l11 = _l12 /\ _l21 = _l22 -> _l21 = _l22
3 1, 2 zipeqd
_l11 = _l12 /\ _l21 = _l22 -> zip _l11 _l21 = zip _l12 _l22
4 3 exp
_l11 = _l12 -> _l21 = _l22 -> zip _l11 _l21 = zip _l12 _l22

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)