theorem sssize (A: set): $ finite A <-> A C_ upto (size A) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(finite A <-> E. n A C_ upto n) -> (E. n A C_ upto n <-> A C_ upto (size A)) -> (finite A <-> A C_ upto (size A)) |
2 |
|
dffin2 |
finite A <-> E. n A C_ upto n |
3 |
1, 2 |
ax_mp |
(E. n A C_ upto n <-> A C_ upto (size A)) -> (finite A <-> A C_ upto (size A)) |
4 |
|
uptoeq |
k = n -> upto k = upto n |
5 |
4 |
nseqd |
k = n -> upto k == upto n |
6 |
5 |
sseq2d |
k = n -> (A C_ upto k <-> A C_ upto n) |
7 |
6 |
elabe |
n e. {k | A C_ upto k} <-> A C_ upto n |
8 |
|
uptoeq |
k = size A -> upto k = upto (size A) |
9 |
8 |
nseqd |
k = size A -> upto k == upto (size A) |
10 |
9 |
sseq2d |
k = size A -> (A C_ upto k <-> A C_ upto (size A)) |
11 |
10 |
elabe |
size A e. {k | A C_ upto k} <-> A C_ upto (size A) |
12 |
|
leastel |
n e. {k | A C_ upto k} -> least {k | A C_ upto k} e. {k | A C_ upto k} |
13 |
12 |
conv size |
n e. {k | A C_ upto k} -> size A e. {k | A C_ upto k} |
14 |
11, 13 |
sylib |
n e. {k | A C_ upto k} -> A C_ upto (size A) |
15 |
7, 14 |
sylbir |
A C_ upto n -> A C_ upto (size A) |
16 |
15 |
eex |
E. n A C_ upto n -> A C_ upto (size A) |
17 |
|
uptoeq |
n = size A -> upto n = upto (size A) |
18 |
17 |
nseqd |
n = size A -> upto n == upto (size A) |
19 |
18 |
sseq2d |
n = size A -> (A C_ upto n <-> A C_ upto (size A)) |
20 |
19 |
iexe |
A C_ upto (size A) -> E. n A C_ upto n |
21 |
16, 20 |
ibii |
E. n A C_ upto n <-> A C_ upto (size A) |
22 |
3, 21 |
ax_mp |
finite A <-> A C_ upto (size A) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)