theorem sizess1 (A: set) (k: nat): $ A C_ upto k -> size A <= k $;
Step | Hyp | Ref | Expression |
1 |
|
uptoeq |
x = k -> upto x = upto k |
2 |
1 |
nseqd |
x = k -> upto x == upto k |
3 |
2 |
sseq2d |
x = k -> (A C_ upto x <-> A C_ upto k) |
4 |
3 |
elabe |
k e. {x | A C_ upto x} <-> A C_ upto k |
5 |
|
leastle |
k e. {x | A C_ upto x} -> least {x | A C_ upto x} <= k |
6 |
5 |
conv size |
k e. {x | A C_ upto x} -> size A <= k |
7 |
4, 6 |
sylbir |
A C_ upto k -> size A <= k |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS)