Theorem sizess1 | index | src |

theorem sizess1 (A: set) (k: nat): $ A C_ upto k -> size A <= k $;
StepHypRefExpression
1 uptoeq
x = k -> upto x = upto k
2 1 nseqd
x = k -> upto x == upto k
3 2 sseq2d
x = k -> (A C_ upto x <-> A C_ upto k)
4 3 elabe
k e. {x | A C_ upto x} <-> A C_ upto k
5 leastle
k e. {x | A C_ upto x} -> least {x | A C_ upto x} <= k
6 5 conv size
k e. {x | A C_ upto x} -> size A <= k
7 4, 6 sylbir
A C_ upto k -> size A <= k

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS)