Theorem sizess | index | src |

theorem sizess (A: set) (k: nat): $ finite A -> (A C_ upto k <-> size A <= k) $;
StepHypRefExpression
1 sizess1
A C_ upto k -> size A <= k
2 1 a1i
finite A -> A C_ upto k -> size A <= k
3 uptoss
upto (size A) C_ upto k <-> size A <= k
4 sssize
finite A <-> A C_ upto (size A)
5 sstr
A C_ upto (size A) -> upto (size A) C_ upto k -> A C_ upto k
6 4, 5 sylbi
finite A -> upto (size A) C_ upto k -> A C_ upto k
7 3, 6 syl5bir
finite A -> size A <= k -> A C_ upto k
8 2, 7 ibid
finite A -> (A C_ upto k <-> size A <= k)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)