theorem sizess (A: set) (k: nat): $ finite A -> (A C_ upto k <-> size A <= k) $;
Step | Hyp | Ref | Expression |
1 |
|
sizess1 |
A C_ upto k -> size A <= k |
2 |
1 |
a1i |
finite A -> A C_ upto k -> size A <= k |
3 |
|
uptoss |
upto (size A) C_ upto k <-> size A <= k |
4 |
|
sssize |
finite A <-> A C_ upto (size A) |
5 |
|
sstr |
A C_ upto (size A) -> upto (size A) C_ upto k -> A C_ upto k |
6 |
4, 5 |
sylbi |
finite A -> upto (size A) C_ upto k -> A C_ upto k |
7 |
3, 6 |
syl5bir |
finite A -> size A <= k -> A C_ upto k |
8 |
2, 7 |
ibid |
finite A -> (A C_ upto k <-> size A <= k) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)