theorem uptoss (a b: nat): $ upto a C_ upto b <-> a <= b $;
Step | Hyp | Ref | Expression |
1 |
|
ltirr |
~b < b |
2 |
|
ltnle |
b < a <-> ~a <= b |
3 |
|
elupto |
b e. upto a <-> b < a |
4 |
|
elupto |
b e. upto b <-> b < b |
5 |
3, 4 |
imeqi |
b e. upto a -> b e. upto b <-> b < a -> b < b |
6 |
|
ssel |
upto a C_ upto b -> b e. upto a -> b e. upto b |
7 |
5, 6 |
sylib |
upto a C_ upto b -> b < a -> b < b |
8 |
2, 7 |
syl5bir |
upto a C_ upto b -> ~a <= b -> b < b |
9 |
8 |
con1d |
upto a C_ upto b -> ~b < b -> a <= b |
10 |
1, 9 |
mpi |
upto a C_ upto b -> a <= b |
11 |
|
elupto |
x e. upto a <-> x < a |
12 |
|
elupto |
x e. upto b <-> x < b |
13 |
11, 12 |
imeqi |
x e. upto a -> x e. upto b <-> x < a -> x < b |
14 |
|
ltletr |
x < a -> a <= b -> x < b |
15 |
14 |
com12 |
a <= b -> x < a -> x < b |
16 |
13, 15 |
sylibr |
a <= b -> x e. upto a -> x e. upto b |
17 |
16 |
iald |
a <= b -> A. x (x e. upto a -> x e. upto b) |
18 |
17 |
conv subset |
a <= b -> upto a C_ upto b |
19 |
10, 18 |
ibii |
upto a C_ upto b <-> a <= b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)