Theorem uptoss | index | src |

theorem uptoss (a b: nat): $ upto a C_ upto b <-> a <= b $;
StepHypRefExpression
1 ltirr
~b < b
2 ltnle
b < a <-> ~a <= b
3 elupto
b e. upto a <-> b < a
4 elupto
b e. upto b <-> b < b
5 3, 4 imeqi
b e. upto a -> b e. upto b <-> b < a -> b < b
6 ssel
upto a C_ upto b -> b e. upto a -> b e. upto b
7 5, 6 sylib
upto a C_ upto b -> b < a -> b < b
8 2, 7 syl5bir
upto a C_ upto b -> ~a <= b -> b < b
9 8 con1d
upto a C_ upto b -> ~b < b -> a <= b
10 1, 9 mpi
upto a C_ upto b -> a <= b
11 elupto
x e. upto a <-> x < a
12 elupto
x e. upto b <-> x < b
13 11, 12 imeqi
x e. upto a -> x e. upto b <-> x < a -> x < b
14 ltletr
x < a -> a <= b -> x < b
15 14 com12
a <= b -> x < a -> x < b
16 13, 15 sylibr
a <= b -> x e. upto a -> x e. upto b
17 16 iald
a <= b -> A. x (x e. upto a -> x e. upto b)
18 17 conv subset
a <= b -> upto a C_ upto b
19 10, 18 ibii
upto a C_ upto b <-> a <= b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)